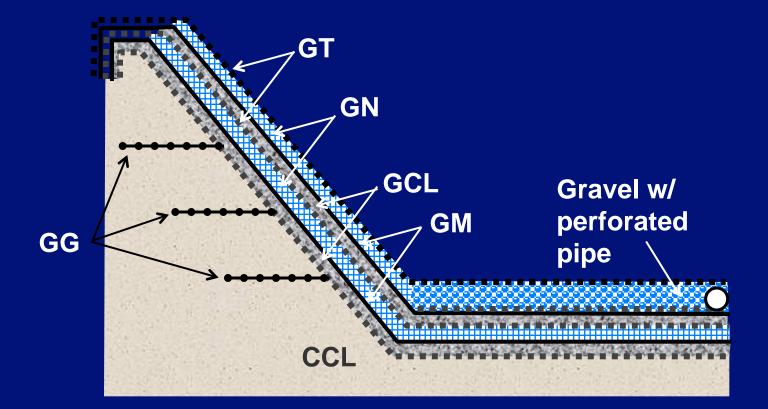
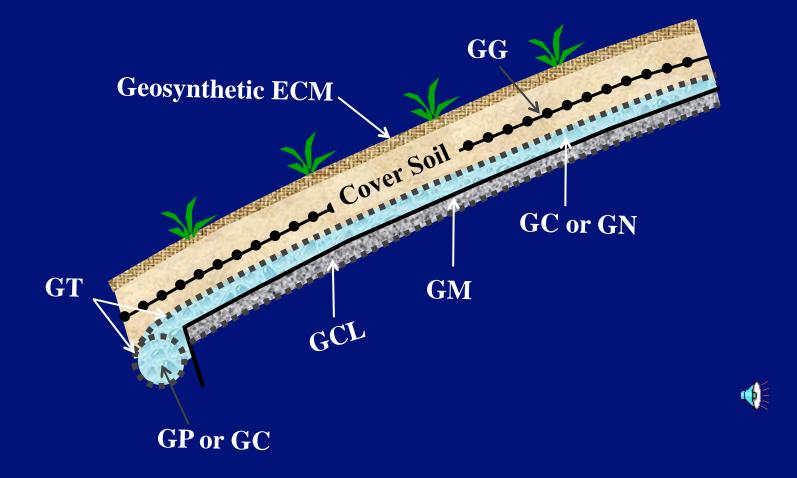
Geosynthetics in Waste Containment Systems by **Geosynthetic Institute** 475 Kedron Ave. Folsom, PA 19033, USA Phone (610) 522-8440 **Fax (610) 522-8441** E-mail: robert.koerner@coe.drexel.edu


Geosynthetics in Waste Containment Systems*

*also surface impoundments, waste piles and heap leach pads

- **1.0 Introduction and Overview**
- 2.0 Geosynthetic Materials
- **3.0 Design and Testing**
- 4.0 System Considerations
- 5.0 Concerns and Summary

Liner System



Final Cover System

.....

........

Solid Waste

Possible Geosynthetic Layers in a Waste Containment System

in Final Cover - 7

in Waste Itself - 2

in Base Liner - <u>9</u> <u>18 Layers!</u>

4 E

1.0 Introduction and Overview

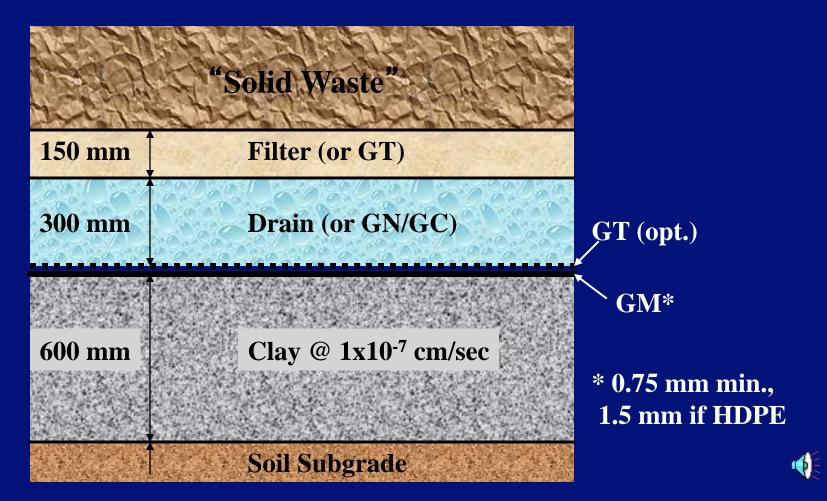
- **1.1** Nature of solid waste problem
- **1.2 Genesis of liner systems**
- **1.3** Current legislation
- **1.4** Natural soil vs. Geosynthetics
- **1.5 Equivalency issues**

1.1 Nature of Waste Problem

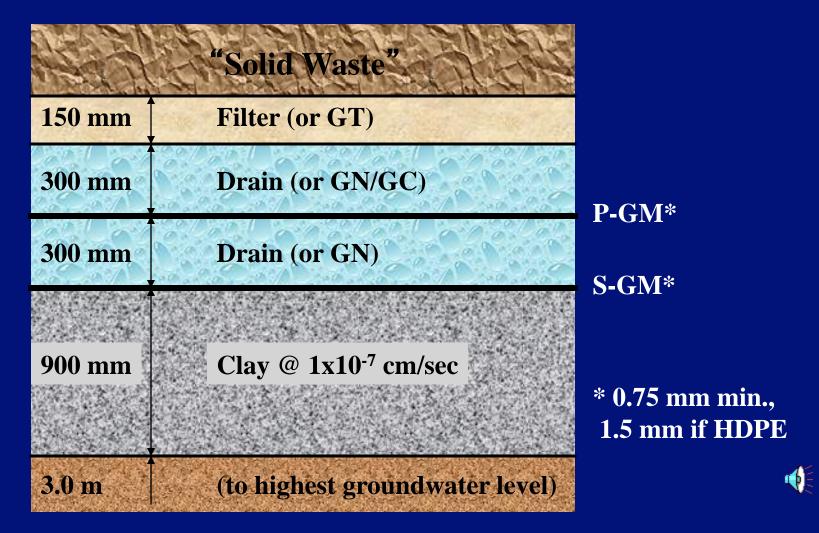
- Moisture within and flowing on the waste generates leachate
- Leachate takes the characteristics of the waste
- Thus leachate is very variable and is sitespecific - there is no "typical" leachate
- Flows gravitationally downward into the leachate collection system
- Enters groundwater unless a suitable barrier layer or system is provided

1.2 Genesis of Liner Systems

- single CCL
- single GM
- double GM
- single GM/composite GM/CCL
- composite GM-GCL/composite GM-CCL
- composite GM-GCL/comp. GM-GCL-CCL



1.3 Current U.S. EPA Legislation


- EPA Subtitle "D" of RCRA (Nonhazardous)
- EPA Subtitle "C" of RCRA (Hazardous)
- Superfund via Corps of Engineers
- **DOE/NRC** for Radioactive Wastes
- Worldwide approx. 40 countries have legislation/regulations (survey in GRI Report #23)

Subtitle "D" (MTG) Liner System

Subtitle "C" (MTG) Liner System

Closure System (EPA and Corps of Engineers)

Ground Surface

150 mm	Topsoil	
Varies (frost depth),	Cover Soil	
150 mm	Filter (or GT)	
300 mm	Drain (or GN)	
600 to 900 mm	Clay @ 1x10 ⁻⁷ cm/sec	GI
300 mm	Gas Vent (or GT)	
SA	"Solid Waste"	

M

1.4 Natural Soils vs. GSs (i.e., contrasting materials)

Function	Natural Soil	Geosynthetic	
Barrier-Single	CCL	GM	
	CCL	GCL	
Barrier-	GM/CCL	GM/GCL	
Composite		GM/GCL/CCL	
Drainage Layer	SA	GT	
	GV or SA	GN	
	GV or SA	GT/GN/GT	
Filter Layer	SA	GT	

Where CCL = compacted clay liner; SA = sand; GV = gravel; GM = geomembrane; GCL = geosynthetic clay liner; GT = geotextile; GN = geonet.

1.5 Equivalency Issues

- Most (all?) regulations allow for replacement if alternate is "technically equivalent"
- Regulations rarely (never?) illustrate how technical equivalency is to be justified

Technical Equivalency Considerations

General Concerns	Barrier	Drain	Filter
chemical resistance	\checkmark		
permeability (or diffusion)	\checkmark	n/a	\checkmark
transmissivity	n/a	\checkmark	n/a
thickness concerns	\checkmark	\checkmark	\checkmark
long-term behavior	\checkmark	\checkmark	\checkmark

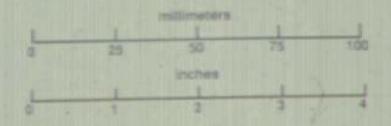
2.0 Geosynthetics in Liners and Covers

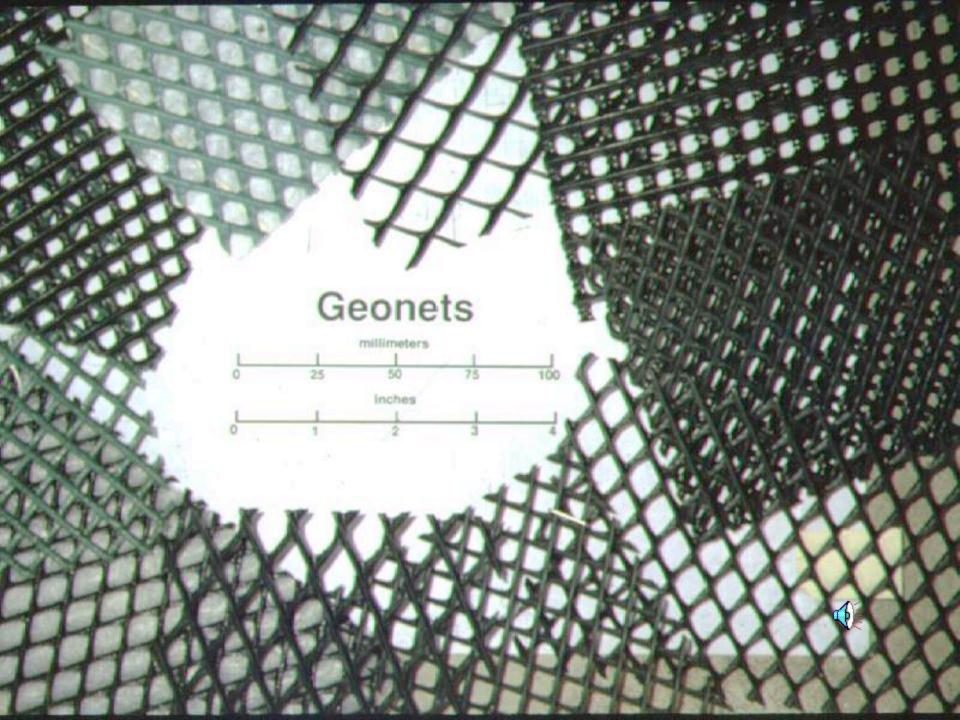
- 2.1 Categories and Types
- **2.2 Primary Functions**
- 2.3 Design-by-Function
- 2.4 Testing Issues
- 2.5 Design Models
- 2.6 Factor-of-Safety Comments

() -

- geocomposites (GC)
- geopipe (GP)
- geogrids (GG)
- geotextiles (GT)
- geonets (GN)
- geosynthetic clay liners (GCL)

()

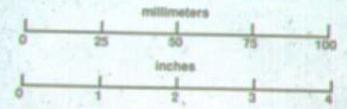

• geomembranes (GM)

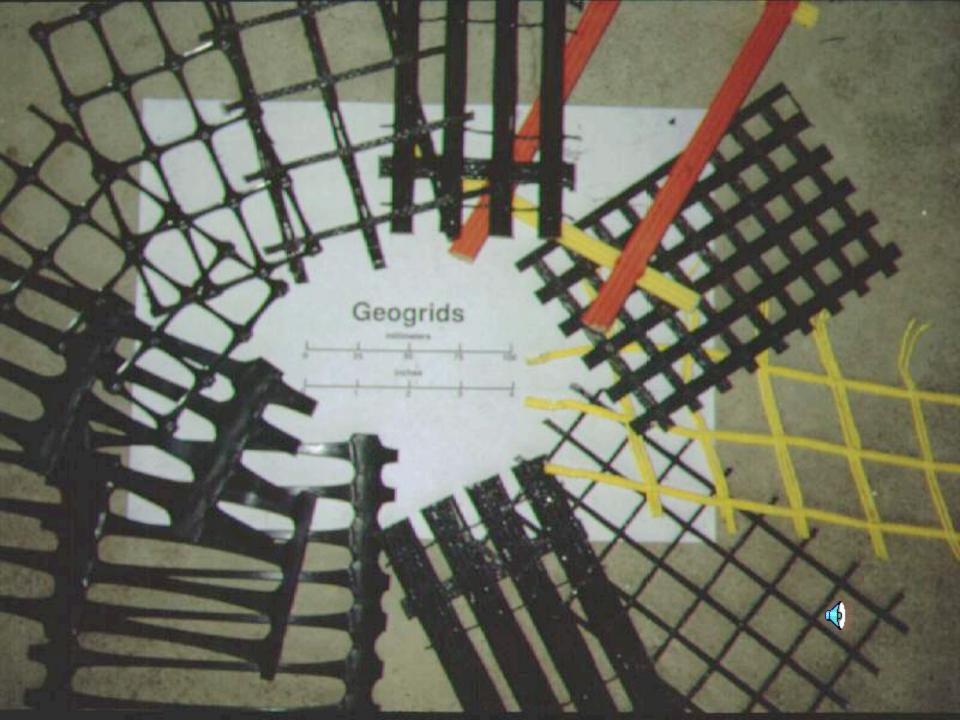

2.1 Categories of Geosynthetics (GS)

Geomembranes

	1	millionatart		-
6	25	90	73	100
		Inches		
-	1		-	-
-	5	12		

Geosynthetic Clay Liners

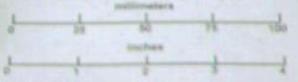



Geotextiles

NAME AND ADDRESS OF

APPROVED BY THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS ADDRESS

1 May - Cha 2 May 2 M


Geocomposite Erosion Control Materials

Inches

Strip (Wick) Drains

Inches 1

Edge Drains

Geo-Others inches 3 millimeters 50 75 100 25 Ö

2.2 Primary Functions

Type of GS	S	R	F	D	B
GM	-	-	-	-	Y
GCL	-	-	-	-	Y
GN	-	-	-	Y	-
GT	Y	Y	Y	Y	-
GG	-	Y	-	-	-
GP	-	-	-	Y	-
GC	Y	Y	Y	Y	Y

S = separation; \mathbf{R} = reinforcement; \mathbf{F} = filtration; \mathbf{D} = drainage; \mathbf{B} = barrier.

2.3 "Design-by-Function" Concept

FS = **Allowable (Test) Property Required (Design) Property**

where

• Test Methods are from ASTM, ISO or GRI

()E

- Design Models from the Literature
- Factor-of-Safety is Site Specific

2.4 Testing Issues

- ASTM Committee D-35 (~ 60 test methods, practices and guides)
- Subcommittees (67 TG's)
 - Mechanical
 - Hydraulics
 - Endurance
 - Geomembranes
 - Geosynthetic Clay Liners
- ISO is very active (~ 20 tests)
- Topics are the same, but ISO & ASTM differ somewhat in details and procedures

фE

• GRI Standards are also available

GRI Standards*

- Geotextiles (8 Stds)
- Geogrids (6 Stds)
- Geonets (1 Std)
- Geomembranes (15 Stds)
- Geosynthetic Clay Liners (2 Stds)
- Geocomposites (8 Stds)
- Geosynthetics (7 Stds)

* For use by everyone until ASTM or ISO develops a test method on the similar subject; then the GRI method is discontinued

Reduction Factors

 Concept - modify an index test value to a sitespecific performance value where

$$Property_{(allow)} = Property_{(test)} \left[\frac{1}{RF_1 \times RF_2 \times \cdots} \right]$$

()

RF_i = those details not included in test

- Currently used for reinforcement and flow related problems
- Not currently used on barrier problems

2.5 Design Models

- Utilize geotechnical, hydraulic, environmental engineering concepts
- Typically free body, then limit equilibrium
- Viscoelasticity sometimes considered via strain compatibility
- FEM just beginning
- Judgment (i.e., empiricism) still required, but models are improving rapidly

2.6 Factor-of-Safety Comments

Time→	Temporary	Permanent
Severity		
Noncritical	moderate	high
Critical	high	very high

Recommended FS-values for cover systems*

Type of Waste→ ↓ Ranking	Hazardous waste		Abandoned dumps	piles and
		waste		leach pads
Low	1.4	1.3	1.4	1.2
Moderate	1.5	1.4	1.5	1.3
High	1.6	1.5	1.6	1.4

*other problems have less defined FS-values

For example; ref: Koerner, R. M. and Soong, T.-Y. (1998), "Analysis and Design of Veneer Cover Soils," 6th ICG Proc., IFAI, p. 1-26

()E

Next File