5.6 Seams and Details

- "the" major concern with regard to leakage
- electrical field method indicates 80% of leaks are in seams and details (e.g., appurtenances)
- trial seams are important
- destructive tests (both shear and peel) are necessary
- different sampling strategies are available, e.g., method of attributes per GRI GM14
- nondestructive tests required throughout

Various Field Seaming Methods for Different Geomembranes

Type of	Type of Geomembrane						
Seaming Method	HDPE	VFP	fPP	PVC	CSPE-R	EIA -R	EPDM -R
		E					
extrusion (fillet)	Α	Α	Α	n/a	n/a	n/a	n/a
thermal fusion	А	Α	Α	Α	А	Α	n/a
(hot wedge and hot a							
chemical	n/a	n/a	n/a	Α	Α	Α	n/a
(solvent and bodied							
solvent)							
adhesive	n/a	n/a	n/a	A	A	Α	A
(chemical and contac							

n/a = not applicable

Extrusion Fillet Seaming

Extrusion Fillet Seam (excessive flashing) <

Extrusion Fillet Seam excessive heat-puckered)

Thermal Fusion (Hot Wedge)

Dual Hot Wedge Seam excessive squeeze-out

Dual Hot Wedge Seam oughened sheet - acceptable

Dual Hot Wedge Seam oughened sheet - poor)

Thermal Fusion (Hot Air)

Single Hot Air good example - 1.0 mm

Chemical (Solvent and Bodied Solvent)

Geomembrane Test Strips

- Prequalifies personnel, equipment and procedures
- Typically on 2-3 m long strips of excess GM
- Made before AM-work; before PM-work, and changes in weather conditions
- Shear and peel tests via field tensiometer
- Seams pass → go to production seams
- Seams fail → try again
- Seams fail → retain crew or modify equipment

()

• CQA document <u>must</u> be specific

Recommended Test Method Details for Geomembrane Seams in Shear and in Peel and for Unseamed Sheet in Tension

Type of Test	HDPE	LLDPE	PVC	CSPE-R	EIA-R
Shear Test on Seams					
ASTM Test Method	D6392	D6392	D3083/D6392	D751	D751
Specimen Shape	Strip	Strip	Strip	Grab	Grab
Specimen Width (mm)	25	25	25	100 (25 grab)	100 (25 grab)
Specimen Length (mm)	150 + seam	150 + seam	150 + seam	225 + seam	225 + seam
Gage Length (mm)	100 + seam	100 + seam	100 + seam	150 + seam	150 + seam
Strain Rate (mm/min.)	50	500	500	300	300
Strength (kPa) or (kN)	Force/ $(25 \times t)$	Force/ $(25 \times t)$	Force/ $(25 \times t)$	Force	Force
Peel Test on Seams					
ASTM Test Method	D6392	D6392	D413/D6392	D413	D751
Specimen Shape	Strip	Strip	Strip	Strip	Strip
Specimen Width (mm)	25	25	25	25	25
Specimen Length (mm)	100	100	100	100	100
Gage Length (mm)	n/a	n/a	n/a	n/a	n/a
Strain Rate (mm/min.)	50	500	50	50	50
Strength (kPa) or (kN)	Force/ $(25 \times t)$	Force/ $(25 \times t)$	Force/25	Force/25	Force/25
Tensile Test on Sheet					
ASTM Test Method	D638	D638	D882	D751	D751
Specimen Shape	Dumbbell	Dumbbell	Strip	Grab	Grab
Specimen Width (mm)	6.3	6.3	25	100 (25 Grab)	100 (25 Grab)
Specimen Length (mm)	115	115	150	150	150
Gage Length (mm)	33	33	50	75	75
Strain Rate (mm/min)	50	500	500	300	300
Strength (kPa) or (kN)	Force/(wt)	Force/(wt)	Force/(wt)	Force	Force
Strain (mm/min.)	Elong/33	Elong/33	Elong/50	Elong/75	Elong/75
Modulus (kPa)	From Graph	From Graph	From Graph	n/a	n/a

where n/a = not applicable, t = geomembrane thickness, w = specimen width

Destructive Seam Tests

- Typically 1 per 150 m seam
- From 0.5 to 1.5 m long sample
- Distribute as per CQA plan
- Typically 5 shear and 5 peel from each 300 mm long sample
- CQA plan must be specific regarding pass/fail criteria
- If failure, take 2 new samples 3 m on each side of failure
- Repeat until bad section bounded
- Cap strip accordingly

Nondestructive Seam Tests

NDT Method	Seam Types*	Geomembrane
		Types
1. air lance	C, BC, Chem. A.,Cont. A	all, except HDPE
2. mechanical point	all	all
stress		
3. dual seam	HW, HA	all
4. vacuum chamber	all	all
5. electric wire	all	all
6. electric current	all	all
7. ultrasonic udse echo	HW, HA	HDPE, VLDPE,
	C, BC,	PVC
	Chem. A, Cont. A	
8. ultrasonic impedanc	HW, HA	HDPE, VLDPE,
	C, BC,	PVC
	Chem. A, Cont. A	
9. ultrasonic shadow	E Fil., HW, HA	HDPE, VLDPE
E Fil. = extrusion fillet	BC = bodied chemical	(solvent)
HW = hot wedge	Chem. A = chemical adhesi	ve 🥂
HA = hot air	Cont. A = contact adhesive	<u> </u>

C = chemical (solvent)

5.7 QA/QC

- Both quality in manufacturing and in construction are necessary for geosynthetics
- MQC/MQA (in factory) in tandem with CQC/ CQA (in field) is ideal
- Leakage rates are directly related to good CQC, followed by good CQA
- Numerous reports/papers are currently available
- Costs of CQA are 2-10% of completed facility

Recommended U. S. EPA Implementation Programs

Implementation Program for CQA (i.e., field inspectors/monitors)

No. of Field Crews*	No. of Certified
At Each Site	Personnel
1-2	1 - Level III**
3-4	1 - Level III**
	1 - Level I
≥ 5	1 - Level III**
	1 - Level II
	1 - Level I

*Performing a Critical Operation; Typically 4 to 6 People/Crew **Or PE with applicable experience

Recommended U. S. EPA Implementation Programs (cont'd)

Implementation Program for CQC (i.e., field installers/contractors)

No. of Field Crews*	No. of Certified
At Each Site	Personnel
1-4	1 - Level III**
≥ 5	1 - Level III**
	1 - Level I

*Performing a Critical Operation; Typically 4 to 6 People/Crew **Or PE with applicable experience

Certification of CQA/CQC Field Installation Inspectors

• NICET Certification

- Level I (entry)
- Level II (2 yr. exp.)
- Level III (5 yr. exp.)
- Subfields

CSPE-R	PVC	HDPE
VLDPE	GCL	GN
GT	GG	GA

 Compacted Clay Liners and Soil Collection Systems to be added

Certification of CQA/CQC Field Installation Inspectors (*cont'd*)

- Tests began in December 1992
- Tests given in 200 locations
- Four times per year
- \$75 per test
- \$20 annual fee for registry
- multiple choice answers
- recommendations by immediate supervisor
- recommended in EPA Technical Guidance Document
- program is <u>not</u> a good fit for CQC (activity is ongoing by Installers Assoc., IAGI)

Geosynthetic Testing Laboratory Accreditation Program

- not certification of results, but accreditation of laboratory equipment and infrastructure
- follows ISO 9003
- test-by-test challenge on actual performance
- Geosynthetic Accreditation Institute-Lab Acrreditation Program (GAI-LAP) effort

()

GAI-LAP

- Applying Laboratory Must Supply:
 - quality manual
 - SOP's of all tests
 - typ. reports of all tests
- laboratory visit by auditor(s)
- each test yes, no, or pending
- subsequent year's are handled by proficiency testing
- program began January 1, 1995
- contact: Dr. George Koerner/Geosynthetic Institute

()

Other Possible Activities

- Certification of Geosynthetic Testing Laboratory Technicians
- Certification of Geosynthetic Products per Generic Specification
 - geomembranes (begin 1999)
 - geonets (?)
 - geotextiles (?)
 - geogrids (?)
 - geosynthetic clay liners (?)
 - geocomposites (?)
 - geopipe (?)

• Certification of Geosynthetic Design Engineers (???)

5.8 Summary

- Geosynthetics are bona fide engineering materials
- Test methods and designs are available challenge them accordingly
- Liner systems are very capable of assuring environmentally safe and secure waste facilities
- Basic advantage of geosynthetics is quality control of factory manufactured products
- Products must be accompanied by rigorous CQC/CQA
- Geosynthetics potential is <u>awesome</u>!

We Thank You for Your Attendance and Best Wishes in Your Use of Geosynthetics!